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Abstract—Existing semi-supervised learning (SSL) methods
assume that labeled and unlabeled data share the same class
space. However, in real-world applications, unlabeled data al-
ways contain classes not present in the labeled set, which may
cause classification performance degradation of known classes.
Therefore, open-world SSL approaches are researched to handle
the presence of multiple unknown classes in the unlabeled data,
which aims to accurately classify known classes while fine-
grained distinguishing different unknown classes. To address
this challenge, in this paper, we propose an open-world SSL
method for Self-learning Open-world Classes (SSOC), which
can explicitly self-learn multiple unknown classes. Specifically,
SSOC first defines class center tokens for both known and
unknown classes and autonomously learns token representations
according to all samples with the cross-attention mechanism.
To effectively discover novel classes, SSOC further designs a
pairwise similarity loss in addition to the entropy loss, which can
wisely exploit the information available in unlabeled data from
instances’ predictions and relationships. Extensive experiments
demonstrate that SSOC outperforms the state-of-the-art baselines
on multiple popular classification benchmarks. Specifically, on
the ImageNet-100 dataset with a novel ratio of 90%, SSOC
achieves a remarkable 16% improvement.

Index Terms—open-world semi-supervised learning, self-
learning

I. INTRODUCTION

With the development of machine learning, deep learning

has achieved significant accomplishments in various domains

such as vision, text, and speech [1], [2], [3], [4]. In the

early stages, supervised learning relied on a large amount of

expensive labeled data for model training. SSL emerged to

reduce costs by effectively utilizing abundant unlabeled data

[5], achieving performance comparable to supervised learning

in scenarios with limited labeled data [6], [7]. However, almost

all SSL methods are based on a default assumption: unlabeled

data and labeled data are sampled from the same distribution,

and there are no unseen classes for the model, as shown in

the first row of Fig. 1. While this assumption has enabled

their widespread application in closed-world scenarios [8], [9],

it leads to significant performance degradation in real-world

situations [10], [11], [12], [13]. For instance, in pathological

image analysis, some lesion tissue slide images may come

from unknown diseases, each with significant variations. This

requires models that can distinguish unknown pathological
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Fig. 1: SSL settings do not include the concept of novel

classes. In open-set SSL, the unknown classes in the unlabeled

dataset are treated as a single category, and exclusively focus

on known class classification. In open-world SSL, multiple

unknown classes can be distinguished. Unknown class samples

are highlighted with a red border.

image categories. In the field of network security, security

experts use models for detecting malicious software, with the

expectation that these models can differentiate new types of

malicious software [14], [15]. Therefore, it is essential to in-

vestigate a more inclusive and versatile open-world approach.

Recently, researchers have proposed the concept of open-

world SSL [16]. This framework allows for the presence of

unknown classes in the unlabeled dataset, which are classes

that do not appear in the labeled set, as shown in Fig.

1, third row. The objective is to classify both known and

unknown classes simultaneously. Previously, open-set SSL

methods have been proposed to address the real scenario [17],

[18]. However, unlike the open-world SSL approach discussed

in this paper, open-set SSL methods simply reject unknown

class samples to prevent them from negatively affecting the

classification performance of known classes in the unlabeled

dataset. Their primary objective remains classifying the known

classes, as depicted in the second row of Figure 1. Similarly,

novel class discovery methods [19], [20], [21] also consider

the open-world setting, but they assume that the unlabeled
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dataset contains only unknown class samples and focus solely

on clustering the unknown classes without considering the

model’s performance on known classes. Compared to these

two approaches, open-world SSL poses a more challenging

problem. The key to addressing this problem lies in enabling

the model to learn multiple unknown classes better while

ensuring the classification performance of known classes.
The problem of open-world SSL has attracted extensive

attention, and several methods have been proposed to address

this issue [16], [22]. These methods primarily approach the

problem from the perspective of loss functions, employing

optimization objectives that facilitate the learning of unknown

classes and incorporating uncertainty mechanisms or adaptive

thresholds to alleviate the issue of class imbalance during the

learning process [23]. Although these methods have achieved

remarkable performance in open-world SSL, they are limited

to implicitly modeling multiple novel classes and partitioning

the novel class space at the label level. This approach makes it

difficult for the model to truly understand category concepts,

leading to biases and typically exhibiting poor robustness

when facing unknown classes. Therefore, there is still a lack

of an open-world SSL method that can explicitly model

category concepts, effectively discriminate between categories,

and uncover hidden patterns and structures in the data.
To address this, we propose an open-world SSL method

called Self-Supervised Open-World Class (SSOC) that aims

to explicitly self-learn multiple unknown classes. Specifically,

we initialize prototypes (class centers) representations for both

known and unknown classes. Then, we iteratively learn the

representation of class centers by combining a cross-attention

mechanism with data features to achieve explicit modeling

of class information. To assist the learning of multiple novel

classes, we employ confident unlabeled samples to constrain

the entropy loss and utilize pairwise similarity loss to extract

information from unlabeled data, ensuring consistency at both

the instance-level and prediction-level representations. The

model architecture of SSOC not only ensures the classification

performance of known classes but also focuses on capturing

the differences and similarities among classes. By learning the

feature representations of class prototypes, SSOC can perform

classification operations with clear physical interpretations.

This provides a new direction for exploring the application

of interpretable learning methods in open-world SSL tasks.
In summary, our work has the following contributions:

• We propose an open-world SSL method for self-learning

open-world classes. The method exploits a cross-attention

mechanism to model class concepts explicitly and learn

multiple unknown classes autonomously.

• We design a paired similarity loss to intelligently utilize

information from unlabeled data for novel class discovery

via instance prediction and relationship identification.

• We conducted experiments on CIFAR-10, CIFAR-100,

and ImageNet-100 datasets with various data partitions to

illustrate the effectiveness of SSOC. Our results showcase

the remarkable robustness of SSOC in scenarios with

limited labeled data and many novel classes.

II. RELATED WORK

Open-world SSL is closely related to SSL, open-set SSL,

and novel class discovery (NCD). In this section, we sum-

marize the similarities and differences among these research

directions and investigate their development history.

A. Semi-Supervised Learning

The goal of SSL is to improve the learning performance of

models by utilizing a large amount of unlabeled data along

with a small amount of labeled data, thereby addressing the

problem of high annotation costs. In recent years, significant

progress has been made in deep SSL methods, which can be

categorized into two main approaches: consistency regulariza-

tion [24] and pseudo-labeling methods [25], [26]. Consistency

regularization is based on the core idea that the model’s

predictions should remain consistent or similar under small

perturbations of input data. It aims to enforce the model to

produce consistent outputs for perturbed versions of the same

input, promoting robustness and generalization. On the other

hand, pseudo-labeling methods aim to augment the labeled

dataset by using the model’s predictions on unlabeled data

as pseudo-labels. These pseudo-labels are treated as ground-

truth labels for the unlabeled data, expanding the training

dataset and enabling the model to learn from the additional

unlabeled samples. Many methods combine both ideas. For

example, MixMatch [27] applies random data augmentation

to unlabeled samples and uses MixUp [28] pseudo-labeling to

leverage information from unlabeled data. FixMatch [29] uses

strong augmented images along with pseudo-labels generated

from weakly augmented versions to learn consistency targets.

However, SSL methods tend to misclassify unknown samples

as known classes, which leads to a significant performance

degradation in open-world scenarios. Consequently, traditional

SSL methods are not suitable for effectively addressing open-

world problems.

B. Open-World Semi-Supervised Learning

To address the emergence of novel classes, researchers have

started studying the open-world problem. Initially, unknown

classes were treated as a single category, leading to the

proposal of the open-set SSL scenario. This scenario assumes

that the unlabeled dataset may contain samples from unknown

classes, and the goal is to reduce the negative impact of

unknown classes on the learning of known classes and improve

the model’s robustness. In recent years, several open-set SSL

methods have emerged, focusing on reducing the weight of

unknown class samples [30] or selectively using unknown

class samples [31], [32]. For example, DS3L [30] decreases the

weight of unknown class samples to reduce interference from

unknown classes, while S2OSC [31] combines the sampling

of novel class samples and model retraining in an adaptive

manner, effectively incorporating semi-supervised learning.

However, in practical applications, there may be multiple novel

classes, and research has proposed adding post-processing

steps for unknown class clustering to distinguish multiple

novel classes after open-set SSL methods [16]. However, this
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approach does not yield satisfactory results due to the lack of

focus on unknown classes during training.

To address these issues, a recent work [16] introduces

the open-world SSL setting, which assumes the presence of

multiple unknown classes in the unlabeled dataset. The goal is

to classify known classes while discovering multiple unknown

classes. Compared to previous research, the open-world SSL

scenario is closer to real-world situations but is still in its

early stages. ORCA [16] is the first end-to-end deep learning

framework proposed to tackle this problem. It establishes

an uncertainty-adaptive margin mechanism to enhance the

learning of unknown classes and achieves outstanding results.

NACH [22] designs adaptive thresholds to balance the learning

of known and unknown classes and proposes a novel classi-

fication loss function to aid the model in learning unknown

classes, achieving better performance than ORCA.

C. Novel Class Discovery

The open-world SSL task’s essence is discovering multiple

unknown novel classes, closely related to NCD, which falls

under weakly supervised learning [19], [20], [21], [33]. It

involves training with both labeled and unlabeled datasets

and assumes that both the unlabeled training and test sets

comprise samples from unknown classes, with the goal of

clustering these unknown classes. Initially, NCD methods

typically employ a two-stage learning approach, where prior

knowledge is learned on the labeled dataset, and then transfer

learning-like methods are used to cluster the unknown classes

in the unlabeled set. For instance, CILF [33] proposed a

framework for incremental learning that acquires adaptive

embeddings to tackle novel class detection, while DTC [34]

proposed a deep transfer clustering method that leverages prior

knowledge from known classes to enhance the representation

of unknown classes and learns class prototypes to accomplish

the clustering of unknown classes. However, NCD methods

solely concentrate on the clustering performance of unknown

classes while disregarding the classification task of known

classes. Consequently, when both known and unknown classes

are present in the test set, NCD methods struggle to achieve

excellent overall performance.

III. PRELIMINARY

In the context of open-world SSL, the training set consists

of a labeled dataset Dl = {(xi, yi)}Mi=1 containing M labeled

samples and an unlabeled dataset Du = {xi}Ni=1 containing

N unlabeled samples, where x ∈ R
D and D represents the

image input dimension. We define Cl as the set of classes that

appear in Dl, and Cu as the set of classes that appear in Du.

In the labeled dataset Dl, y ∈ Cl = {1, ..., |Cl|}, while in

the unlabeled dataset Du, x belongs to a certain class in Cu.

Assuming Cl �= Cu and Cl ∩ Cu �= ∅, we define Cs = Cl ∩ Cu

as the set of known classes and Cn = Cu \ Cl as the set

of unknown classes. S = |Cs| and N = |Cn| represent the

number of known and unknown classes, respectively.

In the previously mentioned methods related to open-world

SSL, there is no concept of novel class in SSL, and it assumes

Cl = Cu by default, while NCD assumes that the unlabeled

data does not contain any known classes, that is to say,

Cl ∩ Cu = ∅. Therefore, open-world SSL is inherently more

challenging in nature.

IV. METHOD

In this section, we will first introduce the model architecture

for self-supervised open-world classification. Then, we will

formalize several learning objectives aimed at discovering

multiple unknown classes. Finally, we will provide an overall

algorithmic framework.

A. Self-Learning Open-World Classes

From the formalized problem definition, it can be under-

stood that the key to the open-world SSL problem lies in ef-

fectively utilizing the unknown class samples in the unlabeled

dataset. The main idea of SSOC is to explicitly self-learn open-

world classes, regardless of whether they are known or un-

known, which means we aim to learn representations of classes

of the same dimensionality as image features. Obtaining class

prototype representations alone is not a difficult problem;

many previous unsupervised clustering methods can partition

the data into several clusters and compute the center of each

cluster. However, these methods do not utilize any labeled

information and simply optimize the feature embedding model

to achieve good clustering performance without incorporating

class centers into the learning process. During the training

process of open-world SSL, the data is input to the model in

batches, and we expect the model to discover class information

in each batch as much as possible and dynamically adjust the

class centers. In backpropagation, explicit label information

and the potential similarity relationships between samples

are applied to optimize the class centers and the feature

representations of images. To achieve this functionality, the

core module of SSOC employs a cross-attention mechanism,

which is the only parameterized network layer in SSOC apart

from the feature extractor.

The cross-attention mechanism is a method that captures

the correlation features between two sequences. It was first

introduced in Transformer [35] and is used to fuse the input

sequence from the decoder with the output sequence from the

encoder, obtaining encoder information relevant to the current

position of the decoder. The cross-attention mechanism has

significantly contributed to sequence modeling and natural

language processing tasks. For example, it has been used in

image-text classification to merge multi-modal input sequences

[36] and in machine translation to capture dependencies

between distant positions in a sequence [37]. The internal

structure of the cross-attention mechanism consists of three

matrices: the query matrix WQ, the key matrix WK , and

the value matrix WV . The input sequences to the model

can come from different modalities but must have the same

dimensions. Using the query, key, and value matrices, the

cross-attention mechanism calculates the correlation between

sequences and fuses the value sequence relevant to the query

sequence based on their weights. This mechanism allows
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Fig. 2: SSOC framework. SSOC models the concept of explicit classes and utilizes a cross-attention mechanism to facilitate

dynamic interaction between image features and class centers. Through iterative steps, SSOC achieves self-learning of class

centers. During inference, SSOC predicts the class based on the similarity between image features and class centers.

the model to prioritize vital information in the sequences,

enhancing task performance and capability.

In the context of this paper, we assume that X =
{xi|xi ∈ R

D}Bi=1 represents the image data of the t-th batch,

where B represents the batch size. By utilizing a pre-trained

deep neural network fθ : RD → R
d, we obtain the embedding

features Z = {zi = fθ(xi)|xi ∈ X, zi ∈ R
d}. Here, θ

denotes the model parameters, and d represents the dimen-

sionality of the embedding vectors. For ease of subsequent

computations, SSOC sets the dimensions of WQ, WK , and

WV as d × d. We denote the class centers obtained from

the t-th batch as At = {ai}S+N
i=1 , particularly, A0 denotes

the randomly initialized class center feature matrix, and ai
represents the feature vector of the i-th class. In the cross-

attention mechanism, we treat class features as query inputs,

and data features as key and value inputs, then do matrix mul-

tiplication with the corresponding parameter matrix, namely

Q = AtW
Q,K = ZWK , V = ZWV . The employed cross-

attention mechanism can be expressed as follows.

ΔA = SoftMax(
QKT

√
dk

)V (1)

The product of two vectors can usually represent the degree

of similarity between them. In the equation above, QKT

represents the attention matrix of size (S + N) × B. The

element at the i-th row and j-th column of this matrix can be

interpreted as the correlation between the i-th class center and

the j-th sample in the batch. A higher value indicates that the

sample is likelier to belong to that class. The attention scores

are then passed through a SoftMax layer and weighted sum

with the data features, resulting in the cross-attention matrix

ΔA of size (S + N) × d. Each row of ΔA represents the

weighted sum of the i-th class center and the data features,

indicating the contribution of samples more similar to the i-

th class in the batch. Conversely, samples less similar to the

i-th class have smaller contributions. Therefore, ΔA can be

approximated as the class center feature vectors for the batch

of samples. By computing the residual with the previous class

centers, we can obtain the updated class centers At+1.

At+1 = At +ΔA (2)

In this way, At+1 retains the class information of most

historical data while introducing the information of newly

discovered classes in a residual manner. In the next iteration,

it will be involved in computing the attention scores as class

centers from the previous step. After several iterations, the

class centers obtained from Equation 2 can represent the

category concepts of all the data. Through this explicit learning

approach, SSOC utilizes the cross-attention mechanism to

achieve dynamic interaction between data features and class

centers, enabling self-learning of categories. Compared to

simply using clustering to obtain class centers, our method

is less susceptible to the influence of data with extreme

distribution deviations and better captures relevant features

between samples and different classes.

In the preceding sections, we obtained the residual represen-

tation of class centers, denoted as ΔA. Subsequently, SSOC

employs a distance-based approach, utilizing dot product sim-

ilarity to measure the distance between a sample and a class

center within the same feature space for interpretable classi-

fication. The distances are then normalized into a probability

distribution using the activation function. Through our exper-

iments, we observed the challenge of achieving a balanced

learning process between known and unknown classes, often

resulting in slow learning of unknown classes and premature

overfitting to known classes. To address this issue, we adjusted

the temperature parameter of the SoftMax function when

calculating the predicted probabilities for labeled data, while
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retaining the default value of 1 for unlabeled data. This

adjustment involved utilizing a larger temperature parameter,

leading to a flatter probability distribution, whereas a smaller

value sharpens the output. By modifying the temperature

parameter, our objective was to reduce the model’s confidence

in predicting known classes, thereby mitigating overfitting to

known classes and enhancing the learning of unknown classes.

Consequently, for a sample xi, its probability distribution can

be expressed as follows.

pi =

{
σ(zi ·ΔAT /ε) xi ∈ Dl

σ(zi ·ΔAT ) Others.
(3)

where σ represents the SoftMax optimization operator, ε is

the scaling hyperparameter, and pij represents the predicted

probability of sample xi belonging to class j. In the subsequent

discussions, we employ p̂i = maxj pi to denote the maximum

confidence score and ŷi = argmax pi to represent the pseudo-

label of the sample, which is then converted into one-hot form.

Lastly, we illustrate the architecture of SSOC in Fig. 2

B. Optimize Objective

To assist SSOC in learning unknown classes in the open-

world scenario, we designed a set of optimization objectives.

Specifically, our loss function consists of three components:

a cross-entropy loss that selects confident unlabeled data, a

pairwise similarity loss that selects confident pairs of related

samples, and a regularization term that prevents overfitting to

known classes. The overall objective is as follows.

L = LCE + αLBCE + βLRE (4)

where α and β are balancing hyper-parameters. Next, we will

explain these three loss objectives in detail.

Cross-Entropy. Cross-entropy is a metric widely used to

measure the difference between two probability distributions,

commonly applied in classification tasks and probability esti-

mation. For labeled data, SSOC maximizes the utilization of

label information by minimizing the cross-entropy loss. The

ground-truth labels of the labeled data Dl are represented as

one-hot vectors Y l, and the probability distribution P l of the

labeled data is calculated using Eq. 3. The supervised loss

term can be expressed as follows.

Ll
CE = − 1

M
M∑
i=1

S+N∑
j=1

Y l
ij logP

l
ij (5)

For unlabeled data, they lack the necessary ground-truth labels,

and direct computation of cross-entropy is impossible. To

address this issue, many SSL methods employ pseudo-labels

to compute the pseudo-supervised loss for unlabeled samples,

helping the model extract information from unlabeled data.

However, in many scenarios, noisy data in the dataset can

result in incorrect or unreliable pseudo-labels, which can

interfere with the model and degrade performance. To reduce

noise interference and ensure the robustness of the model,

we use a threshold to filter out high-confidence pseudo-labels

for model training. Specifically, by calculating the probability

distribution Pu and pseudo-labels Ŷ u for the unlabeled sample

set Du using Eq. 3, we only consider unlabeled samples with

maximum confidence scores higher than the threshold τ1 for

computing the cross-entropy loss.

Lu
CE = − 1

N
N∑
i=1

I(P̂u
i > τ1) log P̂

u
i (6)

where I(·) is the indicator function. In summary, the overall

cross-entropy loss of SSOC is the weighted sum of the two

components above.

LCE = γLl
CE + δLu

CE (7)

where γ and δ are balancing hyper-parameters.

In multiple experiments, we observed that during the initial

training stages, the model has limited knowledge about un-

known classes and exhibits higher uncertainty when predicting

unlabeled data. As a result, the model initially selects a small

number of unknown class samples, which is insufficient to

develop a comprehensive understanding of unknown classes.

However, the labeled data has precise and unambiguous

ground-truth labels, and the supervision from Ll
CE is relatively

strong. This can cause the model to be biased towards known

classes and incorrectly classify unknown class samples as

single known classes. To mitigate this issue and enhance

the model’s attention towards unknown classes, we introduce

perturbations to the unlabeled data. For each unlabeled image

sample, we generate two augmented images, r1 and r2, and

concatenate their feature vectors with those of the labeled data.

These concatenated feature vectors are collectively used to

compute the class center increments in Eq. 1. When calculating

the pseudo-supervised loss, we retain only the image data of

r1, treating the pseudo-labels of r2 as the pseudo-labels of

r1. This approach enables the model to learn more invariant

features of unknown classes.

Pairwise Similarity. Binary cross-entropy (BCE) loss is com-

monly used for binary classification tasks. To enable SSOC

to learn better category features, we employ BCE loss to

constrain the similarity between sample pairs. This idea has

been successfully implemented in previous work such as NCD

[38], [39]. In the embedding space, there are only two possible

relationships between samples: same or different classes. The

BCE loss aims to bring similar samples closer and push

dissimilar samples apart. For labeled data, we directly use

the ground-truth labels to determine whether they belong to

the same class. For unlabeled data, we measure the similarity

between sample pairs using the cosine similarity of their fea-

ture embeddings. To mitigate the negative impact of unreliable

noise samples, we introduce a threshold τ2 to filter out sample

pairs with sufficient confidence.

LBCE = −
M+N∑
i=1

M+N∑
j=1

I(min(P̂i, P̂j) > τ2)

× [Sij logP
T
i Pj + (1− Sij) log(1− PT

i Pj)]
(8)
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Sij =

{
I(yi = yj) xi, xj ∈ Dl

cos(Zi,Zj) Others.
(9)

where P = P l ∪ Pu represents the probability distribution of

all data, and Z = Z l ∪Zu represents the features of all data.

During the minimization of the BCE loss, sample pairs

with highly similar features (i.e., sij close to 1) have their

probability distributions optimized to be more similar. Con-

versely, sample pairs with larger feature differences have

their probability distributions optimized to be more distinct.

Therefore, in our approach, the BCE loss aligns the prediction

space with the embedding space, aiding the model in learning

inter-class differences and intra-class similarities.

Maximum Entropy Regularization. In our experiments, we

observed that during the initial training stage of SSOC, the

cross-entropy loss dominated, resulting in the clustering of

class centroids and impeding their separation. As a result, all

unlabeled data might be mistakenly classified into a single

category, which is undesirable. To promote a more uniform

distribution of predicted classes, we introduced a maximum

entropy regularization term to increase the uncertainty of the

model’s predictions. Maximum entropy regularization is essen-

tially the empirical entropy, which estimates the uncertainty of

the prior probability distribution based on the observed data

frequencies. It can be expressed as follows.

LRE =

M+N∑
i=1

pi log pi (10)

In SSOC, we apply the above equation to all samples, max-

imizing the empirical entropy to make the model’s predicted

distribution more flexible and diverse, thus providing more

opportunities for assigning unlabeled data to different classes.

Experimental results demonstrate that the maximum entropy

regularization term effectively enhances the model’s robust-

ness on unknown classes. In Algorithm 1, we provide a

detailed description of the training process of SSOC.

V. EXPERIMENT

This section describes the experimental setup for SSOC, in-

cluding datasets, comparison methods, implementation details,

and evaluation metrics. We present experimental results on

various data splits, validate loss function effectiveness through

ablation study, and assess parameter impact.

A. Experimental Setup

Dataset. To validate the effectiveness of SSOC, we conducted

experiments on three widely used computer vision benchmark

datasets: CIFAR-10 [40], CIFAR-100 [40], and ImageNet-

100 [41]. The CIFAR-10 and CIFAR-100 datasets consist of

60,000 images with a resolution of 32 × 32. Among them,

50,000 images are used for training and 10,000 for testing.

CIFAR-10 consists of 10 classes, with approximately 6,000

images per class, while CIFAR-100 contains 100 classes, with

around 600 images per class. ImageNet-100 is a subset of

the ILSVRC2012 dataset, consisting of 100 classes selected

Algorithm 1 Robust Semi-Supervised Learning for Self-

learning Open-World Classes

Input: Labeled datasets Dl = {(xi, yi)}Mi=1, unlabeled dataset

Du = {xi}Ni=1, the seen classes number S, the novel

classes number N , the number of iterations for updating

class centers t, the current class centers At = {ai}S+N
i=1 ,

a pre-trained backbone fθ, the initialized cross-attention

layers gϕ, the number of the training epochs T , the mini-

batch number B.

Output: A fine-tuned model fθ and the trained cross-attention

layers gϕ.

1: for epoch from 1 to T do
2: for batch from 1 to B do
3: X l, Y l ← Sample mini-batch from Dl

4: Xu
1 , X

u
2 ← Sample and augment mini-batch from

Du

5: Z l,Zu
1 ,Zu

2 ← fθ(X
l), fθ(X

u
1 ), fθ(X

u
2 )

6: ΔA ← gϕ(Z l ∪ Zu
1 ∪ Zu

2 ,At) with (Eq. 1)

7: Compute P l, Pu
1 , P

u
2 with (Eq. 3)

8: Ŷ u
2 ← argmax(Pu

2 )
9: Z, P, Y ← Z l ∪ Zu

1 , P
l ∪ Pu

1 , Y
l ∪ Ŷ u

2

10: Compute LCE with (Eq. 7)

11: Compute LBCE with (Eq. 8)

12: Compute LRE with (Eq. 10)

13: Compute updated class centers At+1 with (Eq. 2)

14: fθ, gϕ ← Optimize with (Eq. 4)

15: end for
16: end for

from the original 1,000 classes [42]. For consistent comparison

with other studies, we used the same 100 classes as ORCA

and NACH. In all datasets, we applied random cropping

and rotation as data augmentation techniques to augment the

dataset. In the main experiments, we treated the first 50% of

classes in each dataset as known classes and the remaining as

unknown classes. We used 50% of the labeled data from the

known classes as labeled data, while the rest, along with the

data from the unknown classes, were treated as unlabeled data.

Additionally, we presented results for different label ratios and

novel ratios. Random data splits were used in all experiments

to ensure the generalizability of the results.

Comparison method. We compare SSOC with SSL, open-

set SSL, NCD, and existing open-world SSL methods. SSL

and open-set SSL methods are limited to classifying known

classes. To extend them to open-world SSL scenarios, K-

means clustering of unknown classes is performed, allowing

evaluation of their performance on novel classes. FixMatch

[29] is chosen as the representative SSL method, and DS3L
[30] and CGDL [32] as representative open-set SSL methods.

Since SSL methods do not include the concept of novel

classes, samples with low confidence in SoftMax outputs are

treated as unknown classes. For NCD-based methods, DTC

[34] and RankStats [39] are selected for comparison. Since

they can only cluster unknown classes and lack performance
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on known classes, we use the Hungarian algorithm to perform

maximum weighted matching between the known classes in

the labeled data and the clustered classes [43], [16], [22], and

evaluate the results separately for these known classes. For

open-world SSL, we compare the reported performances of

ORCA and NACH, the two existing methods in this research

area, to the best of our knowledge.

Implementation Details. For the CIFAR-10 dataset, we employ

ResNet34 [44] as the backbone network and use two Adam

optimizers to optimize the backbone network and the cross-

attention layers separately. We fine-tune the backbone network

with a lower learning rate of 1e-4, while the cross-attention

layers are trained with a slightly higher learning rate of 5e-

3, focusing on learning category information. Both optimizers

have momentum parameters set to (0.9, 0.99). We train the

models with a batch size of 128 for 200 epochs. For the

CIFAR-100 dataset, we use ResNet18 [44] as the backbone

network. The backbone network and the cross-attention layers

are trained with a learning rate of 1e-4. The batch size is 512,

and the models are trained for 500 epochs. For the ImageNet-

100 dataset, we adopt ResNet50 [44] as the backbone network.

The backbone network and the cross-attention layers are

trained with learning rates of 1e-5 and 3e-4, respectively. The

models are trained with a batch size of 100 for 200 epochs.

In all experiments, we employ an early stopping strategy and

dynamically adjust the learning rate using the cosine annealing

method. The experiments on the CIFAR dataset are conducted

on 8 V100 GPUs, while the experiments on ImageNet-100 are

performed using 4 NVIDIA 3090 GPUs.

We utilize a pre-trained ResNet model to extract high-

quality image features. In our experiments, we extract the

initial embedding vectors Z l ∪ Zu of all the data using

the pre-trained backbone before training. Subsequently, we

apply the K-means++ algorithm [45] to these vectors for

unsupervised clustering, resulting in the initialization of class

center representations A0. This initialization, which incor-

porates prior knowledge, facilitates the learning process of

the model. Furthermore, in practical scenarios, it might be

infeasible to obtain samples for unknown classes, we can resort

to random initialization of prototypes for the unknown classes,

while employing the clustering method mentioned earlier to

obtain prototypes for the known classes. The code for SSOC

can be found at https://github.com/njustkmg/SSOC.

Evaluation Metrics. We adopt the evaluation approach used

in [16], [22] and report the accuracy of SSOC on known

classes, unknown classes, and all classes. Additionally, in

the ablation experiments, we report the normalized mutual

information (NMI) on the novel classes. It is worth noting that

since the learned concepts of novel classes by the model are

unordered, before computing the accuracy on unknown classes

and all classes, we utilize the Hungarian maximum weighted

matching algorithm [43] for label alignment to obtain the

optimal matching between the clustering labels of unknown

classes and the ground-truth labels.

B. Main Results

Comparison of main results. In Tab. (I), we display SSOC’s

classification accuracies alongside other methods on CIFAR-

10, CIFAR-100, and ImageNet-100 with 50% label ratio and

50% novel ratio. SSOC consistently outperforms SSL, open-

set SSL, and NCD methods in open-world SSL scenarios,

achieving superior accuracy for known, unknown, and all

classes across all datasets. Compared to the best-performing

method, RankStats, we achieved improvements of 30% and

42.4% on all classes of CIFAR-100 and ImageNet-100, respec-

tively. Furthermore, SSOC outperforms the two open-world

SSL methods overall. Compared to NACH, we achieved a

3.8% improvement in accuracy for known classes in CIFAR-

10, and significantly improved the performance for unknown

classes in the challenging ImageNet-100 dataset, with accuracy

improvements of 2.9% and 3.1%, respectively. Our experimen-

tal results demonstrate that SSOC effectively addresses the

open-world SSL problem.

Change the label ratio. To demonstrate the effectiveness of

SSOC in scenarios with a limited amount of labeled data, we

fixed the novel ratio at 50% and compared the performance

of ORCA, NACH, and SSOC with label ratios of 10% and

30%. Tab. II presents the accuracy for all classes, including

results from the ORCA and NACH papers. It can be observed

that as the labeled data decreases, the performance of all three

methods declines. Notably, on CIFAR-10 and ImageNet-100,

SSOC only incurs performance drops of 1.89% and 7.22%,

respectively, when the label ratio decreases from 50% to

10%, while NACH experiences declines of 3.2% and 12.79%,

respectively. Additionally, on the ImageNet-100 dataset, when

the label ratios are 10% and 30%, SSOC achieves an overall

accuracy that is 8.66% and 6.09% higher than NACH, respec-

tively. Though our CIFAR-100 result with a 30% label ratio

is slightly inferior to NACH, it remains 6.95% above ORCA.

Overall, SSOC demonstrates strong robustness and performs

well in situations with limited labeled data.

Change the novel ratio. By fixing the label ratio at 50%, we

explored the impact of varying novel ratios on open-world

SSL methods. Tab. III shows the overall class accuracy of

ORCA, NACH, and SSOC at novel ratios of 10%, 30%,

70% and 90%. Since the ORCA and NACH papers lack

these experimental data, we reproduced their open-source

code. Observing the data, it is evident that as the number

of unknown classes increases, the performance of all three

methods decreases, but SSOC exhibits a smaller performance

drop than the other two methods. Notably, SSOC achieves

impressive results in scenarios with a higher novel ratio. When

the novel ratio is 90%, SSOC achieves accuracy improvements

of 10.61-22.3% compared to NACH on the three datasets,

and a 16.01% accuracy improvement compared to ORCA

on the ImageNet-100 dataset with a novel ratio of 90%.

Furthermore, on the CIFAR dataset with a novel ratio of 10%,

SSOC did not surpass NACH, indicating that NACH focuses

more on classifying known classes, while SSOC places greater

emphasis on discovering unknown classes and still achieves
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TABLE I: Accuracy on CIFAR-10, CIFAR-100, and ImageNet-100, with 50% label ratio and 50% novel ratio. The best results

are highlighted in bold.

Method Classes
Dataset CIFAR-10 CIFAR-100 ImageNet-100

Method Seen Novel All Seen Novel All Seen Novel All

SSL FixMatch 71.5 50.4 49.5 39.6 23.5 20.3 65.8 36.7 34.9

DS3L 77.6 45.3 40.2 55.1 23.7 24.0 71.2 32.5 30.8
Open-set SSL

CGDL 72.3 44.6 39.7 49.3 22.5 23.5 67.3 33.8 31.9

DTC 53.9 39.5 38.3 31.3 22.9 18.3 25.6 20.8 21.3
NCD

RankStats 86.6 81.0 82.9 36.4 28.4 23.1 47.3 28.7 40.3

ORCA 88.2 90.4 89.7 66.9 43.0 48.1 89.1 72.1 77.8

NACH 89.5 92.2 91.3 68.7 47.0 52.1 91.0 75.5 79.6Open-world SSL

SSOC 93.3 92.6 92.8 69.0 48.0 53.1 91.4 78.4 82.7

TABLE II: Accuracy on CIFAR-10, CIFAR-100, and ImageNet-100 when changing the label ratio, with 50% novel ratio. The

best results are highlighted in bold.

Dataset CIFAR-10 CIFAR-100 ImageNet-100

Label Ratio ORCA NACH SSOC ORCA NACH SSOC ORCA NACH SSOC

10% 84.10 88.10 90.90 38.60 43.38 43.82 69.70 66.81 75.47

30% 87.70 90.21 92.24 43.71 51.06 50.66 70.79 70.74 76.83

50% 89.70 91.30 92.79 48.10 52.10 53.13 77.80 79.60 82.69

TABLE III: Accuracy on CIFAR-10, CIFAR-100, and ImageNet-100 when changing the novel ratio, with 50% label ratio. The

best results are highlighted in bold.

Dataset CIFAR-10 CIFAR-100 ImageNet-100

Novel Ratio ORCA NACH SSOC ORCA NACH SSOC ORCA NACH SSOC

10% 91.20 95.84 95.14 61.35 66.77 64.29 90.36 89.34 91.58

30% 91.08 93.08 95.13 52.17 54.12 56.39 86.09 80.03 90.49

50% 89.70 91.30 92.79 48.10 52.10 53.13 77.80 79.60 82.69

70% 81.52 86.44 87.38 38.12 43.93 44.78 57.57 53.88 73.58

90% 56.63 59.19 75.52 28.29 26.79 37.40 41.10 43.56 65.86

excellent results even with a small number of known classes.

Through these three experiments, we have demonstrated

the effectiveness of SSOC and its outstanding robustness and

generalization performance. SSOC outperforms ORCA and

NACH in handling scenarios with limited labeled data or

many novel classes, making it applicable in a wider range

of scenarios and having significant practical implications.

C. Ablation Study

To validate the effectiveness of different loss functions,

we conducted ablation experiments on ImageNet-100 with

a label ratio and novel ratio of 50%. Tab. IV reports the

accuracy on known classes, unknown classes and the overall

accuracy, as well as the NMI on unknown classes. In the

first three rows, we removed the cross-entropy loss, pairwise

similarity loss, and maximum entropy regularization term,

respectively, and used the remaining loss as the objective

function. The experimental results show that LCE plays a

crucial role in SSOC. The model relies on the supervised

TABLE IV: Ablation study on ImageNet-100 dataset, we

report the accuracy and NMI on unknown classes.

Approach Seen Novel Novel(NMI) All
w/ow/ow/o LCE 2.06 2.03 3.67 1.35

w/ow/ow/o LBCE 90.60 75.51 75.29 80.33

w/ow/ow/o LRE 81.48 37.77 63.88 47.00

SSOC 91.39 78.37 78.32 82.69

loss from labeled data to obtain essential ground-truth class

information and learns about unknown classes through pseudo-

supervised loss. Furthermore, in the experiment where LRE

was removed, the performance on novel classes significantly

deteriorated, confirming the beneficial effect of maximum

entropy regularization on learning novel classes.

D. Parametric Analysis

Effect of threshold selection. To analyze the impact of thresh-

olds on the experimental results, we conducted experiments
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(a) Selected pseudo-labels for

unseen classes (different τ1)

(b) Accuracy of pseudo-labels for

unseen classes (different τ1)

(c) Accuracy of pseudo-labels for

unseen classes (different τ2)

Fig. 3: Analysis of threshold effect on the CIFAR-100 dataset. Fig. 3(a) and Fig. 3(b) illustrate the number of selected pseudo-

labels and the corresponding accuracy for different values of τ1. Fig. 3(c) presents the accuracy of the selected pseudo-labels

for different values of τ2.

(a) Accuracy on seen classes (b) Accuracy on unseen classes (c) Accuracy on overall classes

Fig. 4: Analysis of the effect of loss balance hyper-parameters on the ImageNet-100 dataset. We select two sets of parameter

configurations, and in Fig. 4(a), Fig. 4(b), and Fig. 4(c), we present the accuracy on seen classes, unseen classes, and overall

classes, respectively.

on the CIFAR-100 dataset with different values of τ1 and τ2,

with a label ratio and novel ratio of 50%. In Fig. 3 (a) and

(b), we varied the value of τ1 and presented the number of

unlabeled samples selected by the threshold during each epoch

of training in (a), and the pseudo-label accuracy of selected

unknown class samples in (b). It can be observed that a lower

τ1 is insufficient to filter out falsely labeled samples, which can

interfere with the model’s classification ability. On the other

hand, a larger τ1 excessively eliminates unlabeled data, failing

to provide sufficient unknown class samples for the model

to learn, resulting in poor performance on unknown classes.

In (c), we provide the pseudo-label accuracy of selected

unknown class samples for different τ2 values. In all CIFAR-

100 experiments, we set τ1 to 0.6 and τ2 to 0.8.

Effect of the balance hyper-parameter on the loss. To inves-

tigate the impact of different loss weights on the results, we

present the accuracies of SSOC on the ImageNet-100 dataset

for two sets of loss weights, in Fig. 4. It can be observed that

elevating the weight of loss terms associated with unknown

classes seems to constrain the model’s capacity to learn about

unknown classes, which subsequently impacts the overall per-

formance. This suggests that the loss terms Lu
CE , LBCE , and

LRE are closely related to the learning of unknown classes,

and simply emphasizing the learning of unknown classes

may hurt overall classification. We can assume an extreme

case: when the supervised loss Ll
CE is negligible, SSOC

degenerates into a clustering algorithm on unlabeled data,

without any information about ground-truth classes. When

performing label matching using the Hungarian maximum

weight algorithm, incorrect matches between predicted labels

and true labels increase, resulting in suboptimal results for

unknown classes and overall classification. Therefore, we need

to find an optimal set of loss balance weights.

VI. CONCLUSION

In this work, we propose SSOC to address the open-

world SSL problem. SSOC autonomously learns the categories

in the open world using a cross-attention mechanism and

leverages pairwise similarity loss to extract information from

unlabeled data, discovering novel classes through instance

prediction and relationships. We demonstrate the effectiveness

of SSOC on three benchmark computer vision datasets, where

it outperforms state-of-the-art baseline methods. Moreover,

SSOC exhibits excellent robustness when facing challenges

such as limited labeled data and many novel classes.
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